Adaptability of Bony Armor Elements of the Threespine Stickleback Gasterosteus aculeatus (Teleostei: Gasterosteidae): Ecological and Evolutionary Insights from Symmetry Analyses
More On Article
- Maximizing efficiency in sedimentary ancient DNA analysis: a novel extract pooling approach
- Bioarchaeological Perspectives on Late Antiquity in Dalmatia: Paleogenetic, Dietary, and Population Studies of the Hvar Radošević burial site
- Human dispersal and plant processing in the Pacific 55 000–50 000 years ago.
- Roman Cuisine: A Vegan and Organic Feast? Our Kinderuni Session on Ancient Diets
- Program for Conference on Methodological Innovations in P-XRF-Studies released!
Schröder, M., Windhager, S., Schaefer, K., Ahnelt, H., 2023. Adaptability of Bony Armor Elements of the Threespine Stickleback Gasterosteus aculeatus (Teleostei: Gasterosteidae): Ecological and Evolutionary Insights from Symmetry Analyses. Symmetry 15, 811.
Abstract:
Differentiation in the defensive armor of the threespine stickleback, Gasterosteus aculeatus, is caused by predator-driven divergent selection. Most studies considered armor traits related to swimming behavior, hence combining pre- and post-capture responses to gape-limited predators. Here, we focus exclusively on the defensive complex (DC), the post-capture predator defense. This complex consists of a series of bony elements surrounding the anterior part of the abdomen. Relaxation from predation pressure not only drives reduction of bony elements but is also expected to increase asymmetry in the DC. To test this hypothesis, we used four Austrian freshwater populations that differed distinctly in the formation of the DC. We found significant left–right asymmetries in the DC in the population with a distinctly reduced DC and, surprisingly, also in the population with a significantly enhanced DC. These populations occur in vastly different habitats (stream and lake) characterized by distinct regimes of gape-limited predators (none vs. many). Apparently, both a shift to very low and very high pressure by gape-limited predators can boost asymmetry. We conclude that greater asymmetries in the two populations at the opposite ends of the predatory gradient result from an ongoing process of adaptation to decreased or increased environmental stress.
Keywords: asymmetry; defensive complex; left–right differences; post-capture defense; predation pressure