Improved detection of methylation in ancient DNA
More On Article
- A comparative archaeometric study of Late Bronze Age Black Lustrous and Red Lustrous Wheel-made wares from the Eastern Mediterranean
- Late Paleolithic whale bone tools reveal human and whale ecology in the Bay of Biscay.
- Urbanization and genetic homogenization in the medieval Low Countries revealed through a ten-century paleogenomic study of the city of Sint-Truiden
- From Calibrated Morphs to Facial Stimuli: The Beauty of a Statistically Informed Picture
- Life satisfaction around the world: Measurement invariance of the Satisfaction With Life Scale (SWLS) across 65 Nations, 40 languages, gender identities, and age groups.
Sawyer, S., Gelabert, P., Yakir, B., Llanos-Lizcano, A., Sperduti, A., Bondioli, L., Cheronet, O., Neugebauer-Maresch, C., Teschler-Nicola, M., Novak, M., Pap, I., Szikossy, I., Hajdu, T., Moiseyev, V., Gromov, A., Zariņa, G., Meshorer, E., Carmel, L., Pinhasi, R., 2024. Improved detection of methylation in ancient DNA. Genome Biology 25, 261.
Abstract
Reconstructing premortem DNA methylation levels in ancient DNA has led to breakthrough studies such as the prediction of anatomical features of the Denisovan. These studies rely on computationally inferring methylation levels from damage signals in naturally deaminated cytosines, which requires expensive high-coverage genomes. Here, we test two methods for direct methylation measurement developed for modern DNA based on either bisulfite or enzymatic methylation treatments. Bisulfite treatment shows the least reduction in DNA yields as well as the least biases during methylation conversion, demonstrating that this method can be successfully applied to ancient DNA.