Temporal mapping of derived high-frequency gene variants supports the mosaic nature of the evolution of Homo sapiens.
More On Article
- HEAS Member Awarded GO.INVESTIGATIO Fellowship by the Austrian Academy of Sciences
- A comparative archaeometric study of Late Bronze Age Black Lustrous and Red Lustrous Wheel-made wares from the Eastern Mediterranean
- Late Paleolithic whale bone tools reveal human and whale ecology in the Bay of Biscay.
- Urbanization and genetic homogenization in the medieval Low Countries revealed through a ten-century paleogenomic study of the city of Sint-Truiden
- From Calibrated Morphs to Facial Stimuli: The Beauty of a Statistically Informed Picture
Andirkó, A., Moriano, J., Vitriolo, A., Kuhlwilm, M., Testa, G., Boeckx, C., 2022. Temporal mapping of derived high-frequency gene variants supports the mosaic nature of the evolution of Homo sapiens. Scientific Reports 12, 1-9.
Knowledge on the population history of endangered species is critical for conservation, but whole-genome data on chimpanzees (Pan troglodytes) is geographically sparse. Here, we produced the first non-invasive geolocalized catalog of genomic diversity by capturing chromosome 21 from 828 non-invasive samples collected at 48 sampling sites across Africa. The four recognized subspecies show clear genetic differentiation correlating with known barriers, while previously undescribed genetic exchange suggests that these have been permeable on a local scale. We obtained a detailed reconstruction of population stratification and fine-scale patterns of isolation, migration, and connectivity, including a comprehensive picture of admixture with bonobos (Pan paniscus). Unlike humans, chimpanzees did not experience extended episodes of long-distance migrations, which might have limited cultural transmission. Finally, based on local rare variation, we implement a fine-grained geolocalization approach demonstrating improved precision in determining the origin of confiscated chimpanzees.